Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Yuandong Wu, Christian Näther and Wolfgang Bensch*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany

Correspondence e-mail:
wbensch@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{S}-\mathrm{S})=0.001 \AA$
R factor $=0.021$
$w R$ factor $=0.051$
Data-to-parameter ratio $=34.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

$\mathrm{Cs}_{\mathbf{4}} \mathbf{G e}_{\mathbf{2}} \mathrm{S}_{\mathbf{8}}$

The reaction of $\mathrm{Cs}_{2} \mathrm{~S}_{3}$, Ge and S yields single crystals of tetracesium digermanium octasulfide, $\mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{~S}_{8}$. The structure contains the novel dinuclear anion $\left[\mathrm{Ge}_{2} \mathrm{~S}_{8}\right]^{4-}$, and is another example of a chalcogenidogermanate(IV) exhibiting S_{2} bridging units. Two GeS_{4} tetrahedra in the anion are linked via $\mathrm{S}-\mathrm{S}$ bonds, yielding a six-membered ring which displays a chair conformation and crystallographic $C_{2 \mathrm{~h}}$ symmetry. The anions are connected via Cs^{+}ions. The compound crystallizes with the $\mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{Se}_{8}$ structure.

Comment

The hitherto-known ternary alkali chalcogenido-germanates with composition $A_{2} \mathrm{Ge} Q_{4}$, where A is K, Rb or Cs and Q is Se or Te (Eisenmann, Schrod \& Schäfer, 1984; Sheldrick \& Schaaf, 1994, 1995) crystallize in three different structure types characterized by Ge_{4} units that are interconnected by covalent $Q-Q$ bonding. Attempts to prepare the analogous ternary germanium sulfides yielded the title compound, $\mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{~S}_{8}$.

The crystal structure of $\mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{~S}_{8}$ is based on discrete $\left[\mathrm{Ge}_{2} \mathrm{~S}_{8}\right]^{4-}$ anions, which are connected by Cs^{+}cations. The $\left[\mathrm{Ge}_{2} \mathrm{~S}_{8}\right]^{4-}$ anion is composed of two GeS_{4} tetrahedra which are bridged via two $\mathrm{S}-\mathrm{S}$ bonds, thus forming a six-membered $\mathrm{Ge}_{2} \mathrm{~S}_{4}$ ring (Fig. 1). This ring shows a chair conformation and crystallographic $C_{2 \mathrm{~h}}$ symmetry. The terminal $\mathrm{Ge}-\mathrm{S}$ distances are 2.1428 (11) and 2.1528 (12) \AA, which are shorter than the $\mathrm{Ge}-\mathrm{S}$ bonds to the S atom of the bridging $\mathrm{S}_{2}{ }^{2-}$ anions [2.2891 (8) \AA]. The $S-S$ distance of 2.0767 (15) \AA is typical for an $\mathrm{S}-\mathrm{S}$ single bond (Table 1). The $\mathrm{S}-\mathrm{Ge}-\mathrm{S}$ angles are in the range $100.40(3)-125.13(5)^{\circ}$ (Table 1), indicating a strong distortion of the GeS_{4} tetrahedron. The $\mathrm{Ge}-\mathrm{S}$ bond lengths

Figure 1
A view of the dimeric $\left[\mathrm{Ge}_{2} \mathrm{~S}_{8}\right]^{4-}$ anion of $\mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{~S}_{8}$ with the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) $x,-y, z$; (ii) $-x, y, 1-z$; (iii) $-x$, $-y, 1-z]$.

Figure 2
The crystal structure of $\mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{~S}_{8}$ viewed parallel to the crystallographic b axis.
and $\mathrm{S}-\mathrm{Ge}-\mathrm{S}$ angles are within the ranges found for other thiogermanates (Eisenmann, Kieselbach et al., 1984; Klepp \& Fabian, 1999; Klepp, 2000).

The two crystallographically independent Cs^{+}cations are coordinated by nine S atoms within irregular polyhedra, with $\mathrm{Cs}-\mathrm{S}$ distances in the range 3.4979 (13)-3.7200 (9) \AA. The average of these distances is 3.666 (1) \AA, which well matches the sum of the ionic radii $\left[1.84 \AA\right.$ for S^{2-} and $1.78 \AA$ for Cs^{+} (CN9); Shannon, 1976]. The anions are stacked in a rod-like manner parallel to [010], with the Cs^{+}ions located between the rods (Fig. 2). We note that $\mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{~S}_{8}$ is isotypic with $\mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{Se}_{8}$ (Sheldrick \& Schaaf, 1994).

Experimental

The title compound, $\mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{~S}_{8}$, was initially synthesized from a mixture of $\mathrm{Cs}_{2} \mathrm{~S}_{3}, \mathrm{Ge}, \mathrm{Sb}$ and S in the ratio 2:2:1:7. $\mathrm{Cs}_{2} \mathrm{~S}_{3}$ was prepared from stoichiometric amounts of Cs and S in liquid ammonia under an argon atmosphere. The starting materials were thoroughly mixed and loaded into a silica tube in a nitrogen-filled glove box. After evacuating to $10^{-3} \mathrm{mbar}(1 \mathrm{mbar}=100 \mathrm{~Pa})$ the tube was flame-sealed, placed in a computer-controlled furnace and heated to 853 K within 24 h . After 3 d the tube was cooled at a rate of $2 \mathrm{~K} \mathrm{~h}^{-1}$ to 373 K , followed by rapid cooling to room temperature. The resulting product was washed with dry N, N-dimethylformamide and diethyl ether and the residue dried in vacuo. The product consisted of orange plateletlike crystals which were slightly contaminated with transparent colourless crystals that have been identified as $\mathrm{Cs}_{2} \mathrm{SO}_{4}$. A reaction without $\mathrm{Sb}\left(\mathrm{Cs}_{2} \mathrm{~S}_{3}\right.$:Ge:S 2:2:7) also gave a single phase of $\mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{~S}_{8}$. The crystals are stable in air for several weeks.

Crystal data

$$
\begin{aligned}
& \mathrm{Cs}_{4} \mathrm{Ge}_{2} \mathrm{~S}_{8} \\
& M_{r}=933.42 \\
& \text { Monoclinic, } C 2 / m \\
& a=14.721(2) \AA \\
& b=7.364(1) \AA \\
& c=9.820(1) \AA \\
& \beta=122.43(1)^{\circ} \AA^{\circ} \\
& V=898.5(2) \AA^{3} \\
& Z=2
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=3.450 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 108 \\
& \quad \text { reflections } \\
& \theta=14-19^{\circ} \\
& \mu=12.23 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Polyhedron, orange } \\
& 0.12 \times 0.08 \times 0.06 \mathrm{~mm}
\end{aligned}
$$

Data collection

Phillips PW1100 four-circle diffractometer
ω / θ scans
Absorption correction: numerical
(X-SHAPE; Stoe \& Cie, 1998)
$T_{\text {min }}=0.322, T_{\text {max }}=0.480$
4059 measured reflections
1417 independent reflections
1244 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$(\Delta / \sigma)_{\max }<0.001$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.051$
$S=1.08$
1417 reflections
41 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0206 P)^{2}\right.$
$+2.6105 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=30^{\circ}$
$h=-20 \rightarrow 18$
$k=-10 \rightarrow 10$
$l=-13 \rightarrow 13$
4 standard reflections frequency: 120 min intensity decay: none
$\Delta \rho_{\max }=0.92 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.87 \mathrm{e}^{\AA^{-3}}$
Extinction correction: SHELXL97 (Sheldrick, 1997)
Extinction coefficient: 0.00151 (12)

Table 1

Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cs} 1-\mathrm{S} 2^{\text {i }}$	3.6229 (13)	$\mathrm{Cs} 2-\mathrm{S3}^{\text {iv }}$	3.6289 (8)
$\mathrm{Cs} 1-\mathrm{S}^{2 i}$	3.6256 (12)	$\mathrm{Cs} 2-\mathrm{S}^{\text {vi }}$	3.6289 (8)
Cs1-S3	3.6866 (8)	$\mathrm{Cs} 2-3^{\text {viii }}$	3.7040 (9)
$\mathrm{Cs} 1-\mathrm{S} 3{ }^{\text {iii }}$	3.6866 (8)	$\mathrm{Cs} 2-\mathrm{S} 3{ }^{\text {ix }}$	3.7040 (9)
Cs1-S1	3.7132 (13)	$\mathrm{Cs} 2-\mathrm{S}^{\text {v }}$	3.7176 (5)
$\mathrm{Cs} 1-\mathrm{S}^{\text {iv }}$	3.7170 (5)	$\mathrm{Cs} 2-\mathrm{S} 2{ }^{\text {iv }}$	3.7176 (5)
$\mathrm{Cs} 1-\mathrm{S} 1^{\text {v }}$	3.7170 (5)	Ge1-S2	2.1428 (11)
Cs1-S3 ${ }^{\text {iv }}$	3.7200 (9)	Ge1-S1	2.1528 (12)
$\mathrm{Cs} 1-\mathrm{S3}^{\text {vi }}$	3.7200 (9)	Ge1-S3 ${ }^{\text {iii }}$	2.2891 (8)
$\mathrm{Cs} 2-\mathrm{S}^{\text {ii }}$	3.4979 (13)	Ge1-S3	2.2891 (8)
$\mathrm{Cs} 2-\mathrm{S} 1^{\text {vii }}$	3.5177 (13)	S3-S3 ${ }^{\text {x }}$	2.0767 (15)
Cs2-S2 ${ }^{\text {ii }}$	3.6241 (14)		
S2-Ge1-S1	125.13 (5)	S2-Ge1-S3	112.65 (3)
$\mathrm{S} 2-\mathrm{Ge} 1-\mathrm{S} 3{ }^{\text {iii }}$	112.65 (3)	S1-Ge1-S3	100.40 (3)
S1-Ge1-S3 ${ }^{\text {iii }}$	100.40 (3)	S3 ${ }^{\text {iii }}-\mathrm{Ge} 1-\mathrm{S} 3$	102.71 (4)

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $x, y, z-1$; (iii) $x,-y, z$; (iv) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (v) $\frac{1}{2}-x,-\frac{1}{2}-y, 1-z ;(\mathrm{vi}) \frac{1}{2}-x, y-\frac{1}{2}, 1-z ;(\mathrm{vii}) 1-x,-y, 1-z$; (viii) $\frac{1}{2}+x, \frac{1}{2}-y, z$; (ix) $\frac{1}{2}+x, y-\frac{1}{2}, z ;(\mathrm{x})-x, y, 1-z$.

Data collection: DIF4 (Stoe \& Cie, 1990); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXTL.

Financial support by the State of Schleswig-Holstein is gratefully acknowledged.

References

Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Eisenmann, B., Kieselbach, E., Schäfer, H. \& Schrod, H. (1984). Z. Anorg. Allg. Chem. 516, 49-54.
Eisenmann, B., Schrod, H. \& Schäfer, H. (1984). Mater. Res. Bull. 19, 293-298.
Klepp, K. O. (2000). Z. Kristallogr. New Cryst. Struct. 215, 7-8.
Klepp, K. O. \& Fabian, F. (1999). Z. Naturforsch. Teil B, 54, 1499-1504.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, W. S. \& Schaaf, B. (1994). Z. Naturforsch. Teil B, 49, 655-659.
Sheldrick, W. S. \& Schaaf, B. (1995). Z. Naturforsch. Teil B, 50, 1469-1475.
Stoe \& Cie (1990). DIF4 (Version 7.09X/DOS) and REDU4 (Version 7.03). Stoe \& Cie, Darmstadt, Germany.

