Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yuandong Wu, Christian Näther and Wolfgang Bensch*

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany

Correspondence e-mail: wbensch@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{S-S}) = 0.001 \text{ Å}$ R factor = 0.021 wR factor = 0.051Data-to-parameter ratio = 34.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

$Cs_4Ge_2S_8$

The reaction of Cs_2S_3 , Ge and S yields single crystals of tetracesium digermanium octasulfide, $Cs_4Ge_2S_8$. The structure contains the novel dinuclear anion $[Ge_2S_8]^{4-}$, and is another example of a chalcogenidogermanate(IV) exhibiting S_2 bridging units. Two GeS₄ tetrahedra in the anion are linked *via* S-S bonds, yielding a six-membered ring which displays a chair conformation and crystallographic C_{2h} symmetry. The anions are connected *via* Cs⁺ ions. The compound crystallizes with the Cs₄Ge₂Se₈ structure.

inorganic papers

Received 14 August 2003 Accepted 22 August 2003 Online 24 September 2003

Comment

The hitherto-known ternary alkali chalcogenido-germanates with composition $A_2\text{Ge}Q_4$, where A is K, Rb or Cs and Q is Se or Te (Eisenmann, Schrod & Schäfer, 1984; Sheldrick & Schaaf, 1994, 1995) crystallize in three different structure types characterized by $\text{Ge}Q_4$ units that are interconnected by covalent Q-Q bonding. Attempts to prepare the analogous ternary germanium sulfides yielded the title compound, $\text{Cs}_4\text{Ge}_2\text{S}_8$.

The crystal structure of $Cs_4Ge_2S_8$ is based on discrete $[Ge_2S_8]^{4-}$ anions, which are connected by Cs^+ cations. The $[Ge_2S_8]^{4-}$ anion is composed of two GeS_4 tetrahedra which are bridged *via* two S–S bonds, thus forming a six-membered Ge_2S_4 ring (Fig. 1). This ring shows a chair conformation and crystallographic C_{2h} symmetry. The terminal Ge–S distances are 2.1428 (11) and 2.1528 (12) Å, which are shorter than the Ge–S bonds to the S atom of the bridging S_2^{2-} anions [2.2891 (8) Å]. The S–S distance of 2.0767 (15) Å is typical for an S–S single bond (Table 1). The S–Ge–S angles are in the range 100.40 (3)–125.13 (5)° (Table 1), indicating a strong distortion of the GeS₄ tetrahedron. The Ge–S bond lengths

Figure 1

A view of the dimeric $[Ge_2S_8]^{4-}$ anion of $Cs_4Ge_2S_8$ with the atomlabelling scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry codes: (i) x, -y, z; (ii) -x, y, 1-z; (iii) -x, -y, 1-z].

 ${\rm (\!C\!\!\!\!C\!\!}$ 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2 The crystal structure of $Cs_4Ge_2S_8$ viewed parallel to the crystallographic *b* axis.

and S-Ge-S angles are within the ranges found for other thiogermanates (Eisenmann, Kieselbach *et al.*, 1984; Klepp & Fabian, 1999; Klepp, 2000).

The two crystallographically independent Cs⁺ cations are coordinated by nine S atoms within irregular polyhedra, with Cs-S distances in the range 3.4979 (13)–3.7200 (9) Å. The average of these distances is 3.666 (1) Å, which well matches the sum of the ionic radii [1.84 Å for S²⁻ and 1.78 Å for Cs⁺ (CN9); Shannon, 1976]. The anions are stacked in a rod-like manner parallel to [010], with the Cs⁺ ions located between the rods (Fig. 2). We note that Cs₄Ge₂S₈ is isotypic with Cs₄Ge₂Se₈ (Sheldrick & Schaaf, 1994).

Experimental

The title compound, $Cs_4Ge_2S_8$, was initially synthesized from a mixture of Cs_2S_3 , Ge, Sb and S in the ratio 2:2:1:7. Cs_2S_3 was prepared from stoichiometric amounts of Cs and S in liquid ammonia under an argon atmosphere. The starting materials were thoroughly mixed and loaded into a silica tube in a nitrogen-filled glove box. After evacuating to 10^{-3} mbar (1 mbar = 100 Pa) the tube was flame-sealed, placed in a computer-controlled furnace and heated to 853 K within 24 h. After 3 d the tube was cooled at a rate of 2 K h⁻¹ to 373 K, followed by rapid cooling to room temperature. The resulting product was washed with dry *N*,*N*-dimethylformamide and diethyl ether and the residue dried *in vacuo*. The product consisted of orange platelet-like crystals which were slightly contaminated with transparent colourless crystals that have been identified as Cs_2SO_4 . A reaction without Sb (Cs_2S_3 :Ge:S 2:2:7) also gave a single phase of $Cs_4Ge_2S_8$. The crystals are stable in air for several weeks.

Crystal data

 $\begin{array}{l} {\rm Cs}_4{\rm Ge}_2{\rm S}_8 \\ M_r = 933.42 \\ {\rm Monoclinic, \ } C2/m \\ a = 14.721 \ (2) \ {\rm \AA} \\ b = 7.364 \ (1) \ {\rm \AA} \\ c = 9.820 \ (1) \ {\rm \AA} \\ \beta = 122.43 \ (1)^\circ \\ V = 898.5 \ (2) \ {\rm \AA}^3 \\ Z = 2 \end{array}$

 $D_x = 3.450 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 108 reflections $\theta = 14-19^{\circ}$ $\mu = 12.23 \text{ mm}^{-1}$ T = 293 (2) K Polyhedron, orange 0.12 × 0.08 × 0.06 mm

Data collection

```
Phillips PW1100 four-circle
diffractometer
\omega/\theta scans
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
T_{min} = 0.322, T_{max} = 0.480
4059 measured reflections
1417 independent reflections
1244 reflections with I > 2\sigma(I)
```

Refinement

Table 1

Selected geometric parameters (Å, °).

Cs1-S2 ⁱ	3.6229 (13)	Cs2-S3 ^{iv}	3.6289 (8)
Cs1-S2 ⁱⁱ	3.6256 (12)	Cs2-S3 ^{vi}	3.6289 (8)
Cs1-S3	3.6866 (8)	Cs2-S3 ^{viii}	3.7040 (9)
Cs1-S3 ⁱⁱⁱ	3.6866 (8)	Cs2-S3 ^{ix}	3.7040 (9)
Cs1-S1	3.7132 (13)	$Cs2-S2^{v}$	3.7176 (5)
Cs1-S1 ^{iv}	3.7170 (5)	Cs2-S2 ^{iv}	3.7176 (5)
Cs1-S1 ^v	3.7170 (5)	Ge1-S2	2.1428 (11)
Cs1-S3 ^{iv}	3.7200 (9)	Ge1-S1	2.1528 (12)
Cs1-S3 ^{vi}	3.7200 (9)	Ge1-S3 ⁱⁱⁱ	2.2891 (8)
Cs2-S1 ⁱⁱ	3.4979 (13)	Ge1-S3	2.2891 (8)
Cs2-S1 ^{vii}	3.5177 (13)	\$3-\$3 ^x	2.0767 (15)
Cs2-S2 ⁱⁱ	3.6241 (14)		
S2-Ge1-S1	125.13 (5)	S2-Ge1-S3	112.65 (3)
S2-Ge1-S3 ⁱⁱⁱ	112.65 (3)	S1-Ge1-S3	100.40 (3)
S1-Ge1-S3 ⁱⁱⁱ	100.40 (3)	S3 ⁱⁱⁱ -Ge1-S3	102.71 (4)

 $R_{\rm int} = 0.034$

 $\begin{array}{l} h=-20 \rightarrow 18 \\ k=-10 \rightarrow 10 \end{array}$

 $l = -13 \rightarrow 13$

4 standard reflections

frequency: 120 min

intensity decay: none

 $\theta_{\rm max}=30^\circ$

Symmetry codes: (i) -x, -y, 1 - z; (ii) x, y, z - 1; (iii) x, -y, z; (iv) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (v) $\frac{1}{2} - x, -\frac{1}{2} - y, 1 - z$; (vi) $\frac{1}{2} - x, y - \frac{1}{2}, 1 - z$; (vii) 1 - x, -y, 1 - z; (viii) $\frac{1}{2} + x, \frac{1}{2} - y, z$; (ix) $\frac{1}{2} + x, y - \frac{1}{2}, z$; (x) -x, y, 1 - z.

Data collection: *DIF*4 (Stoe & Cie, 1990); cell refinement: *DIF*4; data reduction: *REDU*4 (Stoe & Cie, 1990); program(s) used to solve structure: *SHELXS9*7 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL9*7 (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *CIFTAB* in *SHELXTL*.

Financial support by the State of Schleswig–Holstein is gratefully acknowledged.

References

- Bruker (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eisenmann, B., Kieselbach, E., Schäfer, H. & Schrod, H. (1984). Z. Anorg. *Allg. Chem.* **516**, 49–54.

Eisenmann, B., Schrod, H. & Schäfer, H. (1984). *Mater. Res. Bull.* **19**, 293–298. Klepp, K. O. (2000). Z. Kristallogr. New Cryst. Struct. **215**, 7–8.

- Klepp, K. O. & Fabian, F. (1999). Z. Naturforsch. Teil B, 54, 1499-1504.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, W. S. & Schaaf, B. (1994). Z. Naturforsch. Teil B, 49, 655-659.
- Sheldrick, W. S. & Schaaf, B. (1995). Z. Naturforsch. Teil B, 50, 1469-1475.
- Stoe & Cie (1990). *DIF*4 (Version 7.09X/DOS) and *REDU*4 (Version 7.03). Stoe & Cie, Darmstadt, Germany.